o ﬂ
“1CIS
Institute for computing SOftware Development Process
and Informatics Studies

Manuel Rodriguez-Martinez, Ph.D.

.
@ = ADMae

Part I: Organizational Issues

» Before taking any project and writing any code
ask yourself:
= Is my organization ready to develop software?

©» Some people believe good developers is all you
need
© Reality: talent is over rated.
= Discipline is the key to success

@ Joel Spolsky — former Microsoft Excel PM

& Internet blog with many rule of thumbs and ideas
Some are not right IMO

Joel Test: 12 Steps to better code

® Test 3: Do you make daily builds?
= Make sure you new code
® Works and does not breaks someone else code
= ICOM 5016 last day integration syndrome
"~ Do it when people are around to fix it
" Rotate who is responsible for the build
* But if someone breaks it that person should fix it
® Test 4: Do you have a bug database?
= Track know bugs
Pick the ones to fix now and the ones to be left for future
* Track cause, buggy behavior, expected behavior, owner

s iCIS

2/18/2009

Obijectives

© Discuss issues associated with software
development process
1 Organizational
1 Procedural

@ Identify best practices to increase your success
rate

Joel Test: 12 Steps to better code

® Test 1: Do you use source control?
I SVN, CVS
11 Manage code and integrate with the rest
1 Keep backups for free ...
® Test 2: Can you make a build in one step?
1 Start you application top down
Phase 1 of DB Project
I No mystery to compile, deploy and run application
1 Most IDE create a project that runs!
1 CMSC 435 @ UMD - Software Engineering course

Deliverable —software application with one click installer
7

+iClIS

Joel Test: 12 Steps to better code

® Test 5: Do you fix bugs before writing new
code?
1 Critical bugs must be fixed ASAP
Ex. Null pointers, number overflows, etc.
71 You know what are doing and is easier to track what
happened
In one week you will forget what the code was doing ...
1 Lots of unfixed bugs == unreliable schedule to finish
1 ICOM Software Gurus ©
& Write 5000 lines of undebugged and untested code
Expect to be able to fix them a week before deadline

® Often they get bored and quit the project (go to play games)
-

s iCIS

Joel Test: 12 Steps to better code

® Test 6: Do you have an up-to-date schedule?
2 Schedule is not carved in stone
© Each developer must update time to end task
* Make sure debugging and testing in included
3 Do not let manager change time!
& Project will fail!
2 Cut luxury features in order to meet deadline
® Test 7: Do you have a spec?
' Functional specification — what the software will do?
Not UML, not layer diagram
Text and possible GUI sketch
What will happen when people use the code

© No spec == guessing

Joel Test: 12 Steps to better code

® Test 8: Do programmers have quiet working
conditions?
= One minute interruption == 15 minutes of lost work
= Give people their own desk with their machine

@ Test 9: Do you use the best tools money can
buy?
= Do not torture your developers with
Old machines with small monitors
Disk space quotas
w Outdated OS release
Bad software tools
& Microsoft Paint vs. Photoshop for Web imaging

Joel Test: 12 Steps to better code

® Test 11: Do new candidates write code during
their interview?
' No writing code == uncertain skills == uncertain
project member == uncertain project outcome
7 Resume is paper — you can put whatever you want
= Need to make candidates write code
Remove duplicates from a linked list
Sort data on an array
= ICOM 4.0 GPA Students
Some of them cannot write code
They even evade ICOM 5016

2/18/2009

Joel Test: 12 Steps to better code

® Test 7: Do you have a spec?
1 Spec helps you “debug application”
® What is needed and what is not needed
® Right vs. wrong behavior
1 Spec helps you control schedule
® Identify required vs. nice to have (luxury) features
® Test 8: Do programmers have quiet working conditions?
1 People like to concentrate and write code (inspiration)
1 Distractions
® Phone
#® Constant questions about schedule or windows crash
Far away bath rooms / food / coffee
Co-worker interruptions

Joel Test: 12 Steps to better code

® Test 10: Do you have testers?
7 UML bug free mythology
® Reality: Every software coding effort is full of bugs
*® Bad design or bad implementation
1 Programmer does first test
JUnit
1 Dedicated tester check whole system or subsystem
Unbiased
* Tries several scenarios and documents anomalies
1 Testing and coding should be interleaved
Write code, debug, test, write code, debug, test, ...

Joel Test: 12 Steps to better code

® Test 12: Do you do hallway usability testing?

1 If your co-workers have a hard time with your GUI
the user has no chance
1 Show people you UI and collect data on
Intuitiveness of UI
* Problems with locations of buttons, menus, etc.
Issues with ease to find desired information
' You can go to a more complex usability testing later
on
If you cannot convince your coworker you are in trouble
Redesigning the UI can be quite expensive

12 ‘CIS.

2/18/2009

Software Products classification Shrink wrap Software

® Products can be classified as

 Shrink wrap ® Used by a large number of people
1 Customized ® Little control on how it is used
= Throwaway ® Sell at retail stored or over the Web
® Shrink wrap ® Develop and release it to the public

) Targeted to a general audience
' Ex. MS Office, Photoshop, iTunes

1 Bug fixed must be provided over Web
® Scales well in terms of money
®» Customized 1 License issued to individual users
2 Specific to a given user or industry 1 Should be able to recover cost with first N licenses
< Ex. CESCO David, UPR PATSI, Universal Insurance Claims 1 After that is all profit
Management
® Throwaway
' Internal code used to experiment with a given technology
2 Ex. Phase 1 and Phase 2 of ICOM 5016 Project

® Need to test and maintain aggressively
1 To continue selling it and making profit
1 Create loyal customer base

Customized software Software Products classification

» Also called internal software ® Throwaway
® Used by people at a company or community
© Smaller audience
» More control on how it used
© You can actually dictate requirements for usage
©» Develop and deploy to the company/community
= Need to give them training

1 Internal code used to experiment with a given
technology

1 Sometimes this is how to polish your specifications
® Rapid prototype to figure out what you can and can't do!
® You want to use throwaway as a means to an

7 Often system is buggy and you need to keep fixing it end
Less scale in term of profit 1 You do not sell throwaway software
0 Contract-based: Once contract is over you get no money ® Ex. Phase I and Phase II of ICOM 5016 project
= Contracts then to be expensive (to account for profits vs loses) # Hardwired servlet code and in-memory DB is not use again
< Contract expiries and no more maintenance is given * But you get Web-based UI and organization of beans right
Unless a maintenance contract gets setup -
15 -CIS|

Making money on software Part II: Procedural Issues

® Shrink wrap

= Make a product that many people will use
Office, Photoshop, MS .Net, iWeb, MacOS

® Software development is cyclic!
1 0ld school water fall software development process

Companies: Microsoft, Apple, IBM, Adobe, Skype assures failure .
» Customized ® You need to have constant testing and feedback
= Make a product that a big agency will use from the user
#® UPR PATSI, US Immigration Information System, US Postal Service » UML WI” not produce COde fOI' yOu'
& Companies: Rock Solid, EDS, IBM, HP o H doT i Iti-th ded .t ith
® You should try to make shrinkwrap whenever possible ow do I specify a multi-threaded system wi a
) shared queue that controls access to a pool of disks?
© Only do customize to help you get cash to make another product . i
2 Shrink wrap is where you want to be UML is good to talk with others about your code

Like ER diagrams

® Source code == real software specification
.

18 ‘CIS.

Cowboy Coding Model

© You start writing code without an actual plan
© Hacker’s way of doing things

= T will start writing code and I will figure out things

along the way
Many ICOM Software Gurus work like this

® You guarantee that the project will be

= Late

0 Full of hard to understand code

< Full of incompatibilities

= Full of unusable features

= Featuring a hard to use UI

Waterfall Model: Problems

® In each phase you deal with a bunch of
uncertainties
= Customer changes her mind about UI

= You drop the ball with the design
Mixed data model with storage logic
Use multi-threaded when multi-process was better

 You realize your platform has buggy support for
networking
Ex. PDAs!
© Change is assured when building software

7 You need a way to make mid-flight course corrections

-

21 . °C|S

Rapid Application Development (RAD)

® Build incomplete but functional prototype (like a demo!)
®» Debug and test major components
® Involve customer by showing prototype
3 Nail down UI
© Prevent change of accepted features ...
®» Add features/fixes into prototype until you reach release
status
7 Hey, but finish the product!!!
» Examples:
3 Agile Programming
© Extreme Programming
© SCRUM

2/18/2009

Waterfall Model
® Software is built in steps

® One phase leads to the

® If this phase is right the
next will likely be right ©

Reality in Software Development

~—
® At each step you might

e, S~]
need to revisit decisions

from previous phase

Agile Programming

® Family of techniques based upon
1 Inclusion of customer into design/development

1 Short cycle to produce working code (not all features)

* Every few weeks a new version with a set of new features is
delivered

1 Test-Driven software development
® First make the tests, then you write code that can pass them
1 Refactor code

Change code based on results of debugging, testing, and
user feedback

1 Produce stable release as results of continuous
improvement process

Extreme Programming

XP Practices o

Team

® Based on daily
practices and team
values P R

» Customer and e (&y
business people are ™" Ty
part of the team

® Always deliver a new
working version ASAP

» Communicate
effectively with all
team members

—
Colective Coding

Planaing
Game.

Continuous Sl Sustainable
\utegration Dasign Pace

T Metaphor —

Dmalt
Releases ——

XP Activities

® Simple Design
© Start with a simple system that works
= Add new working features
® Pair Programming
) 2 programmers work side by side on the same machine (like
Spartan kings)
O Faster, better code plus you have redundancy
¥ Test-Driven Development
© Unit test and full system tests as new features are added
® Design Improvement
= Refactoring — fix the design as you write code
7 You only know you are wrong when you see it

SCRUM Process

30 days

5= -

Working increment

Product 3acklog Sprin- Backlog Sprint of the software

2/18/2009

XP Values

® Simplicity
1 Write code that is simple, clean and straightforward
» Communication

1 Keep direct communication between customers, developers,
business people and managers

® Feedback
1 Always comment on out other code, features, and issues
® E.g., code reviews
» Courage
1 Write the code! If you mess up just refactor
® Avoid getting stuck in perfect implementation issues

SCRUM

®» XP can be chaotic
® Scrum is controlled chaos
®» The Team:
1 Scrum master
& PM
1 Product Owner
@ Customer and business people
1 Developers
® Team works in sprints or burst of one month
1 Design, code, test and demo software
1 Next sprint adds features to previous release
1 Backlog of the spring list the features to do in each sprint

Software System Architecture

® Start out by giving high level system
organization
1 Boxes and arrows

Client
Application Engine

Database

Layered Software Design

© Break down software
model into layer

® Each layer is one or
more libraries with
specific role

Client APT

Design Patterns

® Well understood and documented recipes to
build software
= Reusable code
© Idea borrowed from architecture
7 Archetypes
= Columns, arcs, etc.

@ Smalltalk had them for GUI

® Gang of Four Book (GoF) popularized design
patterns for CS

® You should build your libraries around them

33 °C|S

Example: Abstract Factory

2/18/2009

Each Layer is Simple

© At this level you can lay down the classes
1 UML can help you illustrate structures and relations

Example: Abstract Factory

® You need to write an email client
® Must run in
1 Windows XP and Vista
' MacOS X
= Ubuntu
® Each one has a different look and feel
You do not want to write the different programs

® Instead you want to share as much code as
possible
1 Only differentiate in how UI elements are created

Questions?

